TDA7294 amplifier Circuit board HIFI

tda7294-Ic

TDA7294 amplifier Circuit board HIFI. Here below is described a circuit proposal for a high-efficiency amplifier which can be adopted for both HI-FI and CAR-RADIO applications.

Constraints of implementing high-power solutions are the power dissipation and the size of the power supply. These are both due to the low efficiency of conventional AB class amplifier approaches.

The TDA7294S is a monolithic MOS power amplifier which can be operated at 90V supply voltage (100V with no signal applied) while delivering output currents up to ±6.5 A.

Get new posts by email:

This allows the use of this device as a very high-power amplifier (up to 100W as peak power with T.H.D.=10% and RL = 4 Ohm); the only drawback is the power dissipation, hardly manageable in the above power range.

The typical junction-to-case thermal resistance of the TDA7294 is 1 °C/W (max= 1.5 °C/W). To avoid that, in worst-case conditions, the chip temperature exceeds 150 °C, the thermal resistance of the heatsink must be 0.038 °C/W (@ max ambient temperature of 50 °C).

As the above value is practically unreachable; a high-efficiency system is needed in those cases where the continuous RMS output power is higher than 50-60 W. The TDA7294 was designed to work also in higher efficiency way.

For this reason, there are four power supply pins: two intended for the signal part and two for the power part.

T1 and T2 are two power transistors that only operate when the output power reaches a certain threshold (e.g., 20 W). If the output power increases, these transistors are switched on during the portion of the signal where more output voltage swing is needed, thus “bootstrapping” the power supply pins (#13 and #15).

The current generators formed by T4, T7, zener diodes Z1, Z2 and resistors R7,R8 define the minimum drop across the power MOS transistors of the TDA7294S. L1, L2, L3 and the snubbers C9, R1 and C10, R2 stabilize the loops formed by the “bootstrap” circuits and the output stage of the TDA7294S.

By considering again a maximum average output power (music signal) of 20W, in case of the high-efficiency application, the thermal resistance value needed from the heatsink is 2.2 °C/W (Vs = ±45V and RL=

8 Ohm).

All components (TDA7294S and power transistors T1 and T2) can be placed on a 1.5 °C/W heatsink, with the power Darlington’s electrically insulated from the heatsink.

Since the total power dissipation is less than that of a usual class AB amplifier, additional cost savings can be obtained while optimizing the power supply, even with a high heatsink .

Tda7294 Amplifier Circuit Board Hifi
Tda7294 Amplifier Diagram Circuit Board Hifi

PCB suggestion for the assembly fo circuit potency audio amplifier

Tda7294 Amplifier Circuit Board Hifi
Pcb Tda7294 Board

Tda7294 Amplifier Circuit Board Hifi
Tda7294 Amplifier Circuit Board Hifi Pcb

PCB components side for the montage of parts

Tda7294 Amplifier Circuit Board Hifi
Tda7294 Amplifier Circuit Board Hifi

Datasheet:
TDA7294S

How useful was this post?

Click on a star to rate it!

Average rating / 5. Vote count:

No votes so far! Be the first to rate this post.

As you found this post useful...

Share on the social networks!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?

Photo of author
About the author
Xtronic.org blog author. Electronics technician for the technical school of Brasilia - Brazil. Interested in electronics, circuits and technology in general.
Share:

2 thoughts on “TDA7294 amplifier Circuit board HIFI”

  1. You can,but you need few modifications,because they do not completely match in design,you might blow up something if you just go ahead and replace one with another.

    Reply

Leave a Reply to Angelo Cancel reply